Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
ACS Cent Sci ; 9(11): 1996-2001, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38033805
3.
Nature ; 597(7878): 660-665, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34588671

RESUMO

The densification of integrated circuits requires thermal management strategies and high thermal conductivity materials1-3. Recent innovations include the development of materials with thermal conduction anisotropy, which can remove hotspots along the fast-axis direction and provide thermal insulation along the slow axis4,5. However, most artificially engineered thermal conductors have anisotropy ratios much smaller than those seen in naturally anisotropic materials. Here we report extremely anisotropic thermal conductors based on large-area van der Waals thin films with random interlayer rotations, which produce a room-temperature thermal anisotropy ratio close to 900 in MoS2, one of the highest ever reported. This is enabled by the interlayer rotations that impede the through-plane thermal transport, while the long-range intralayer crystallinity maintains high in-plane thermal conductivity. We measure ultralow thermal conductivities in the through-plane direction for MoS2 (57 ± 3 mW m-1 K-1) and WS2 (41 ± 3 mW m-1 K-1) films, and we quantitatively explain these values using molecular dynamics simulations that reveal one-dimensional glass-like thermal transport. Conversely, the in-plane thermal conductivity in these MoS2 films is close to the single-crystal value. Covering nanofabricated gold electrodes with our anisotropic films prevents overheating of the electrodes and blocks heat from reaching the device surface. Our work establishes interlayer rotation in crystalline layered materials as a new degree of freedom for engineering-directed heat transport in solid-state systems.

4.
Science ; 373(6558): 963-964, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34446593
5.
Nano Lett ; 19(11): 8287-8293, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31661615

RESUMO

Quantum computing based on superconducting qubits requires the understanding and control of the materials, device architecture, and operation. However, the materials for the central circuit element, the Josephson junction, have mostly been focused on using the AlOx tunnel barrier. Here, we demonstrate Josephson junctions and superconducting qubits employing two-dimensional materials as the tunnel barrier. We batch-fabricate and design the critical Josephson current of these devices via layer-by-layer stacking N layers of MoS2 on the large scale. Based on such junctions, MoS2 transmon qubits are engineered and characterized in a bulk superconducting microwave resonator for the first time. Our work allows Josephson junctions to access the diverse material properties of two-dimensional materials that include a wide range of electrical and magnetic properties, which can be used to study the effects of different material properties in superconducting qubits and to engineer novel quantum circuit elements in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...